Subject: Mathematics
Book: Maths
त्रिकोणमिति (Trigonometry) में कोणों के लिए मुख्यतः sin (साइन), cos (कोसाइन), tan (टैन), और इनके व्युत्क्रम (sec, cosec, cot) जैसे पारंपरिक अनुपातों का उपयोग होता है। ज़्यादातर प्रश्नों में 0°, 30°, 45°, 60°, और 90° जैसे प्रमुख कोणों के लिए इन मूल्यों को याद रखना अति महत्वपूर्ण माना जाता है।
### प्रमुख कोणों और उनके सांकेतिक मान
• 0°, 30°, 45°, 60°, 90° (डिग्री में)
• इनका रेडियन रूप: 0, π/6, π/4, π/3, π/2
#### उदाहरण:
- sin(0°) = 0, cos(0°) = 1, tan(0°) = 0
- sin(30°) = 1/2, cos(30°) = √3/2, tan(30°) = 1/√3
- sin(45°) = √2/2, cos(45°) = √2/2, tan(45°) = 1
- sin(60°) = √3/2, cos(60°) = 1/2, tan(60°) = √3
- sin(90°) = 1, cos(90°) = 0, tan(90°) = ∞ (अपरिभाषित)
इनके अतिरिक्त, sec(θ) = 1/cos(θ), cosec(θ) = 1/sin(θ), और cot(θ) = 1/tan(θ) के रूप में परिभाषित होते हैं।
### कुछ महत्वपूर्ण बिंदु
1) sin²θ + cos²θ = 1, जो त्रिकोणमिति का मूल पायदान है।
2) tan(θ) = sin(θ) / cos(θ)
3) 0° और 90° पर tan अथवा cot जैसी राशियों में अक्सर शून्य या अनंत मान (∞) देखे जाते हैं, क्योंकि विभाजन शून्य से हो जाता है।
4) 30° (π/6) व 60° (π/3) का संबंध पारस्परिक रूप से उल्टा दिखता है—जैसे sin(30°) = cos(60°), cos(30°) = sin(60°)।
### अनुप्रयोग
- **ज्यामिति (Geometry)**: समकोण त्रिभुजों की भुजाओं को ढूँढने में (जैसे ऊँचाई, दूरी, ढलान) ये मान उपयोगी हैं।
- **कैल्कुलस (Calculus)**: त्रिकोणमितीय फलनों (साइन, कॉसाइन इत्यादि) के विवर्तन, समाकलन, और श्रेणियों के अध्ययन में कार्य आते हैं।
- **भौतिकी (Physics)**: तरंग (wave), दोलन (oscillation), एवं वेक्टर (vector) संबंधी विश्लेषण में sin एवं cos का व्यापक इस्तेमाल होता है।
- **प्रौद्योगिकी एवं इंजीनियरिंग**: मशीनरी, निर्माण कार्यों में कोणों व बलों का विश्लेषण, इलेक्ट्रॉनिक्स में साइन-वेव और फ़ोरियर श्रृंखला।
### अतिरिक्त कोण (15°, 75°, इत्यादि)
कई बार 15°, 75°, 105°, 120°, 135°, 150°, 180° जैसे कोणों के लिए भी मानों की आवश्यकता होती है। साधारण कोणों (0°, 30°, 45°, 60°, 90°) पर आधारित सारणी व श्रेणीकरण से हम सूत्रों का उपयोग करके अन्य कोणों के मूल्यों की गणना कर सकते हैं, उदाहरण के लिए:
- sin(15°) = sin(45° - 30°)
- tan(75°) = tan(45° + 30°)
और इस प्रकार के फार्मूलों से जटिल कोणों के भी मान निकाले जा सकते हैं।
### सार
त्रिकोणमिति सारणी में 0°, 30°, 45°, 60° तथा 90° जैसे मुख्य कोणों पर sin, cos, tan आदि के मान याद रखना अक्सर गणितीय समस्याओं के समाधान को सरल बना देता है। ये मान प्रतियोगी परीक्षाओं, बोर्ड परीक्षाओं या उच्च गणितीय रिसर्च में, हर जगह बहुत उपयोगी होते हैं। यह सारणी गुणात्मक रूप से सरल दिखती है, किंतु भौतिकी, रसायन, और इंजीनियरिंग के कई क्षेत्रों में इसका योगदान गहरा है—चाहे तरंग सिद्धांत हो, या समकोण त्रिभुजों की औद्योगिक डिजाइन, या कैल्कुलस में अंतर्निहित त्रिकोणमितीय व्यवहार।
The sum of the reciprocals of two numbers is 1/4. If one number is 12, what is the other?
View QuestionA sum triples in 20 years at simple interest. What is the rate of interest per annum?
View QuestionIf a cone has a base radius of 3 cm and height of 4 cm, what is its slant height?
View QuestionIf a person can type 45 words per minute, how many words can they type in 2 hours?
View QuestionIf the ratio of two numbers is 3:5 and their HCF is 4, what are the numbers?
View QuestionIf sin(θ) = 0.6 and θ is acute, what is cos(θ)?
View QuestionThe sides of a triangle are 5 cm, 12 cm, and 13 cm. What type of triangle is it?
View QuestionWhat is the sum of all even numbers between 1 and 50?
View QuestionIf a cone has a radius of 5 cm and a height of 12 cm, what is its slant height?
View QuestionIf the sides of a triangle are 6 cm, 8 cm, and 10 cm, what is the area of the triangle?
View Question